12(2), December 2021, pp. 235-251

Graphitic carbon nitride based composite materials toward Synthesis and Photocatalytic Properties: Review

Lei Zhu *

Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, P.R. China

Abstract: The utilization of solar energy with photocatalytic technology has been considered a good solution to alleviate environmental pollution and energy shortage. Graphitic carbon nitride (g-C₃N₄), a conjugated polymer semiconductor, has drawn increasing attention in environmental photocatalysis over the past decade, owing to its highly chemical stability, low cost and suitable electronic structure with a mild energy gap (~ 2.7 eV). The modification of g-C₃N₄ by coupling with other nanomaterials or forming unique nanostructures have been confirmed as valuable strategies. In this review, we give a comprehensive introduction about the recent developments in engineering g-C₃N₄ by constructing heterostructures which contains of g-C₃N₄/LDH, g-C₃N₄/2D semiconductor and g-C₃N₄/nanoscale photocatalysts. The performance and mechanisms of g-C₃N₄ based photocatalysts in hydrogen production, CO₂ reduction, and organic pollutant degradation are analyzed. Several enhanced photocatalytic mechanisms for these nanohybrids under visible light irradiation have been explicated in detail. This review is expected to provide basic insights into the design of g-C₃N₄ based composite photocatalysts and their applications in solar photocatalysis.

Keywords: g-C₃N₄, 2D semiconductor, LDH, nanoscale photocatalyst

1. Introduction

Graphic carbon nitride (g- C_3N_4) as an emerging star with two-dimensional characteristic structure, where tri-s-triazine units connected by amino groups in each layer, can be seen as a kind of nitrogen substituted graphene-like layered material [1]. Comparing with another carbon material of graphene, g- C_3N_4 own unique semiconductor properties, solid alkaline, and complexing ability [2,3]. Meanwhile graphitic carbon nitride (g- C_3N_4) is an organic semiconductor that has become one of the most widely studied and promising photocatalysts for treatment of water pollution. This is because g- C_3N_4 can absorb visible light and its bandgap is narrow (2.7 eV) [4,5]. Moreover, g- C_3N_4 offers the advantages of high thermal stability, nontoxicity, and low cost. On this basis, g- C_3N_4 is expected to have practical application to address energy shortages and environmental pollution [6,7]. It is known that the thickness, sizes, porous structure, and morphology

^{*} Corresponding author: E-mail: dream909@126.com

of $g-C_3N_4$ can be controlled by using different experimental conditions. However, the specific surface area of $g-C_3N_4$ prepared via traditional methods is small, leading to low photocatalytic activity [8]. It thus becomes necessary to identify effective methods to increase the specific surface area and improve the photocatalytic efficiency of $g-C_3N_4$.

Schematic 1. (a) s-Triazine and (b) tri-s-triazine based structures of $g-C_3N_4$ [9].

Defect engineering (carbon vacancies or nitrogen vacancies) is considered as a simple and effective modification strategy for $g-C_3N_4$ by optimizing its electronic structure, optical characteristics and other physicochemical properties [10]. The slightly enhanced visible light absorption can be achieved by forming defect states between the forbidden bands of g-C₄N₄ and at the same time the separation efficiency of space charge can be significantly improved due to the weakened exciton effect. Moreover, the adsorptionactivation ability of $g-C_2N_4$ for small molecules can also be improved by the charge localization effect of defects, resulting in the enhanced photocatalytic performance. However, most of the visible light and NIR light in the solar spectrum is not fully utilized. Hence, substantial attempts have been made to modify g-C₃N₄ for moderate electronic energy level and outstanding surface properties, including heteroatom doping, nanostructure design and incorporation with other materials [11,12]. Some noble metal modified $g-C_3N_4$ (Ag/g-C_3N_4 [13], Au/g-C_3N_4 [14]) and noble metal mediated $g-C_3N_4$ based indirect Z-scheme heterojunction (Au/Cs_xZn_{1-x}S/g-C₃N₄ [15], Au/BiOBr/g-C₃N₄ [16], Au/BiVO₄/g-C₃N₄ [17], Ag₂Ta₄O₁₁/Ag/g-C₃N₄ [18], Ag/MoS₂/g-C₃N₄ [19]) are designed and prepared to further improve the solar energy utilization, carriers' separation efficiency and redox ability of the photocatalytic system. However, considering the high prices of noble metals and the practical application of photocatalytic technology, direct Z-scheme hetero-structures with full-spectrum absorption need to be synthesized urgently.

With regarding to the fabrication of heterostructures, incorporating $g-C_3N_4$ with other 2D semiconductors, carbon-based materials or even metal oxide nanoparticles is an effective way to introduce the internal electric field or conducting media, conductive to inhibiting photoinduced charge-carrier recombination for the high photocatalytic performance [20–22]. Up to now, numerous interesting and significant findings on superior architectures of $g-C_3N_4$ and its hybrid composites have been reported, especially over the last few years. Some reports were focused on fabrication typical photocatalysts with different morphology followed by coupling with g-C₃N₄ for enhancement of its photocatalytic activity or photoelectrochemical activity. Li et.al reported that the $g-C_3N_4/$ Bi₂MoO₆ heterojunction with a Bi₂MoO₆ content of 16.1 wt.% exhibited the highest photocatalytic activity, and its photocatalytic efficiency was more than three times those of pure g-C₃N₄ or Bi₂MoO₆[23]. Liu et.al reported that high-efficiency direct Z-scheme g- $C_{2}N_{4}/TiO_{2}$ nanorod composites were fabricated for enhancing photocatalytic activity for RHB degradation. The 1.0% g-C₃N₄/TiO₂ nanorod exhibited the highest photocatalytic activity for RHB degradation, which was higher than those of the pure $g-C_3N_4$ and pure TiO₂ nanorods [24].

Fig. 1. Two proposed mechanisms for improving the photocatalytic performance of $g-C_3N_4/TiO_2$ composites. (a) Z-scheme composite system, (b) heterojunction composite

Although several excellent reviews have been presented concerning the effective modification of pristine g-C₃N₄ for wastewater treatment [25, 26], a systematical and comprehensive review on different nanostructure design is not yet reported and emphatically required to promote further developments for its targeted photocatalytic applications. At first, we will introduce basic degradation mechanisms of g-C₃N₄-based photocatalysis and the internal key steps. Subsequently, g-C₃N₄-based multicomponent systems are introduced, including LDH/g-C₃N₄ heterostructures, inorganic 2D semiconductor/g-C₃N₄ nanohybrids, g-C₃N₄/ based metal oxide complex hybrids and its focus on research about the development of visible-light-induced g-C₃N₄-based photocatalysts displayed.

2. Degradation mechanisms of single $g-C_3N_4$ and $g-C_3N_4$ based photocatalysis

The single $g-C_3N_4$ system, the photoexcited electrons in the conduction band (CB) tend to return to the valence band (VB), and the undesired recombination between photogenerated electrons and holes occurs, which is extremely unfavorable to the photocatalytic reactions. When a semiconductor with a suitable band structure comes into intimate contact with $g-C_3N_4$, the spatial separation of photogenerated electronhole pairs can be achieved through efficient charge transfer across the interface between the two semiconductors. Commonly, pristine $g-C_3N_4$ possesses a bandgap of about 2.7 eV, and the CB and VB positions are located at about -1.1 and +1.6 eV vs. normal hydrogen electrode (NHE), at pH 0, respectively [27]. As shown in Fig. 2, conventional $g-C_3N_4$ -based type II heterojunction system is effective for separating photogenerated electron-hole pairs due to the staggered band structures of the component semiconductors. A suitable band structure is the key consideration in choosing the second semiconductor for constructing type II $g-C_3N_4$ -based heterojunction.

Fig.2. Conventional g-C₃N₄-based type II heterojunction system.

During photocatalysis, g-C₃N₄ is directly excited by absorbing photons whose energies (hí) are larger than the energy gap (Eg) of g-C₃N₄, thus resulting in the generation of photoinduced electron-hole (e^{-} h⁺) pairs owing to the transfer of e^{-} from its valence band (VB) to conduction band (CB). The moderate Eg of g-C₃N₄ determines its good photoresponse to visible light. During photocatalysis, O₂%⁻ and h⁺ play a vital role for g-C₃N₄ to degrade various organic contaminants into CO₂, H₂O and other small molecular products [28,29]. Moreover, the generation of reactive oxygen species from adsorbed O₂ by trapping e^{-} also contributes to restrain e^{-} - h⁺ pairs recombination. The two photodegradation pathways for organic pollutants are schematically illustrated in Eqs. (4)–(5) and Fig. 3.

$$g-C_3N_4-e^- + O_2 = g-C_3N_4 + O_2^-$$
 (2)

$$O_2 + 2H^+ + 3g - C_3N_4 - e^- = OH^- + HO^+ + g - C_3N_4$$
 (3)

organic pollutants + $g-C_3N_4-h^+ = g-C_3N_4+CO_2 + H_2 O$

organic pollutants + $O_2^{-} = CO_2 + H_2 O + intermediates$ (5)

Fig. 3. Photocatalytic mechanism of single g-C₃N₄ system.

3. Graphitic carbon nitride based composite photocatalysts

3.1 g-C₃N/LDH photocatalysts

Though coupling LDH and $g-C_3N_4$ can increase the electron-hole separation, the charge carriers on some LDH/g-C₃N₄ photocatalysts are difficult to further transfer and participate in redox reactions [30]. Therefore, constructing LDH/g-C₃N₄/X ternary photocatalysts is considered, where X represents other semiconductor or noble metal. This strategy is expected to not only facilitate the charge carrier transfer at the interface of LDH and g-C₃N₄, but also improve the harvesting ability for visible light.

As shown in Fig. 4, Tonda and Jo [31] incorporated 1 wt% Ag nanoparticles into Ni-AlLDH/g-C₂H₄ composites with various weight percentages of Ni-Al-LDH (5, 10, 15, and 20 wt%, denoted as ALDHCN-5, ALDHCN-10, ALDHCN-15, and ALDHCN-20 by the authors, respectively) and studied their photocatalytic performance in degrading RhB and 4-chlorophenol (4-CP). In their study, the Ni-Al-LDH/g-C₃H₄ composites were first fabricated through hydrothermal method, and then the composites were decorated with Ag nanoparticles via a photo-reduction process to form Ni-Al-LDH/g- C_3N_4 /Ag hybrids (Fig. 4a). The deposition of Ag nanoparticles on Ni-Al-LDH/g-C₃H₄ was clearly observed with TEM image (Fig. 4b). The combination of Ni-Al-LDH and $g-C_3H_4$ greatly increased the photocatalytic activity in degrading both RhB and 4-CP, while the incorporation of Ag nanoparticles further enhanced the photocatalytic performance (Fig. 4c and d). In the mechanism study, the photocatalytic activity of ALDHCN-15 was significantly inhibited in the presence of ammonium oxalate (AO, h⁺ scavenger), benzoquinone (BZQ, O^2 - scavenger), tert-butanol (TBA, OH scavenger). The order of inhibiting ability was BZQ N TBA N AO (Fig. 4e). This result demonstrated that O^2 and OH were the main active species that accounted for the pollutant degradation. The generation of OH during the photocatalytic process was further confirmed by OH trapping PL spectra in terephthalic acid solution (Fig. 4f). The possible photocatalytic mechanism of Ni-Al-LDH/g-C₃N₄/Ag composite was illustrated in Fig. 4g. Both Ni-Al-LDH and $g-C_3N_4$ could generate electron-hole pairs under visible light. Because the CB of $g-C_3N_4$ (-1.32 eV) is more negative than that of Ni-Al-LDH (-0.72 eV), the electrons

239

on the CB of $g-C_3N_4$ could move to the CB of Ni-Al-LDH. Similarly, the holes on the VB of Ni-AlLDH could transfer to the VB of $g-C_3N_4$. This facilitated the electronhole separation. The surface Ag nanoparticles on the composites were excellent electron trappers, which could transfer electrons from the CB of both Ni-Al-LDH and $g-C_3N_4$. Therefore, the electron-hole separation efficiency was further enhanced, contributing to the higher photocatalytic performance.

Fig. 4. Photocatalytic mechanism of single g-C₃N₄ system.

Nayak et. al [32] reported a series of heterostructure NiFe LDH/N-rGo/g-C₃N₄ (CNNG3LDH) nanocomposite were fabricated by combining calcinations-electrostatic self-assembly and hydrothermal steps as shown in Fig. 5. Among the as synthesized heterostructure, CNNG3LDH performed superior photocatalytic activities towards 95 and 72% mineralization of RhB and phenol. Furthermore, CNNG3LDH could achieve the highest photocatalytic H₂ evolution rate of 2508 μ molg-12h⁻¹ and O₂ evolution rate of 1280 μ molg-12h⁻¹ under visible light irradiation. The CNNG3LDH possess lowest PL intensity, reduced arc of the Nyquist plot (43.8 û) and highest photocatalytic density (-0.97 mA cm⁻²) which revealed effective charge separation for superior photocatalytic activities.

Fig. 5. Synthetic steps of heterostructure NiFe LDH/N-rGO/g-C₃N₄.

TEM images of heterostructure CNNG3LDH nanocomposite (Fig. 6a–d) revealed that the heterostructure possesses multiple overlapping of nanosheets in which NiFe LDH and CN were electrostatically assembled with the surface of N-rGO framework. The tiny sized pores created on the surface of CN nanosheets by the gas released during the pyrolysis process allows for the efficient scattering of light during photocatalytic reactions. The positively charged exfoliated NiFe LDH nanosheets (Fig. 6f), was grown firmly on the edge of g-C₃N₄/N-rGO and adhere to the negatively charged N-rGO sheets through electrostatic interaction and resulted in the formation of heterostructure CNNG3LDH nanocomposite (Fig. 6a–e). The photo-degradation rate was determined by plotting C/C₀ vs. time (Fig. 6g) using the following Eq:

Photo-degradation rate = $(C_0 - C/C_0) \times 100$

where C_0 is the initial concentration at time t=0 min C is the concentration at time't' min. For better quantitative understanding of the reaction kinetics of the synthesized heterostructure, kinetic analysis of the degradation of RhB dye was carried out under sun light irradiation using the Langmuir–Hinshelwood model Eq. as follows:

$\ln(C_0 / C) = k_{app} t$

where k app is the apparent rate constant. The kinetics of the rate constant is calculated by the linear plot between ln (C_0/C) vs. irradiation time as shown in Fig. 6h.

241

Fig. 6. (a-d) TEM images of CNNG3LDH, (e) HR-TEM images of CNNG3LDH showing lattice fringes of N-rGO and NiFe LDH, (f) TEM image of NiFe LDH, and (g) C/C0 vs. time plot of RhB degradation and (h) Kinetics of RhB degradation with NiFe LDH, CN, N-rGO, CNLDH and CNNGxLDH.

3.2 g-C₃N/2D semiconductor photocatalysts

Considering the possible synergic effect between TiO₂ nanosheet and g-C₃N₄ nanosheet, the novel facets coupling of g-C₃N₄ {0 0 2} and F-TiO₂ {0 0 1} facet hybrid was prepared by hydrothermal method without any catalysts or templates [32]. Fig. 7a–c shows the SEM images of F-TiO₂, g-C₃N₄ and 30%g-C₃N₄/F-TiO₂ hybrids. As indicated in Fig. 3a, the large amount of F-TiO₂ nanosheets with side length of 50–60 nm and thickness of 10–15 nm can be easily observed. The g-C₃N₄ shows the wrinkle two-dimensional structure in Fig. 7b. EDS in Fig. 7d shows the presence of F element on TiO₂ nanosheets.

Fig. 7. SEM images of (a) F-TiO₂, (b) g-C3N4 and (c) 30%g-C₃N₄/F-TiO₂ hybrids, EDS spectra of (d) F-TiO₂, and proposed visible LED light photodegradation mechanism of g-C₃N₄/F-TiO₂ hybrid photocatalyst.

Fig. 8a shows the MB adsorption on Degussa P25, F-TiO₂, g-C₃N₄ and g-C₃N₄/F-TiO₂ hybrid in the dark. F-TiO₂ shows the highest adsorption capacity because of its highest specific surface area. The photocatalytic activity of g-C₃N₄/F-TiO₂ photocatalysts was studied by degradation of MB under 410 nm LED light irradiation sources. As a comparison, MB degradation with pure TiO₂, Degussa P25 and no catalyst was also carried out under identical conditions. As shown in Fig. 8b, the degradation of MB in Degussa P25, TiO₂, 5% g-C₃N₄/F-TiO₂, 10% g-C₃N₄/F-TiO₂, 30% g-C₃N₄/F-TiO₂, 50% g-C₃N₄/F-TiO₂ and g-C₃N₄ was 15%, 34%, 59%, 71%, 89%, 61% and 42%, respectively. According to Fig. 8 a and b, the absorption of MB on all these materials is not a major factor that obviously influence their photocatalytic performance. Fig. 8c shows that there is a linear relationship between InC_0/C and t, confirming that the photodegradation reaction is indeed pseudo-first-order. According to Fig. 8c and d shows the apparent pseudo-first-order rate constant k_{app} with different catalysts. K_{app} of the photodegradation of MB are 0.0027, 0.0083, 0.0166, 0.0230, 0.0374, 0.0184, 0.0096 min-1 for Degussa P25,

TiO₂, 5%g-C3N4/F-TiO₂, 10%g-C₃N₄/F-TiO₂, 30%g-C₃N₄/F-TiO₂, 50%g-C₃N₄/F-TiO₂ and g-C₃N₄, respectively. An optimal degradation performance of 89% MB was found for 30%g-C3N4/F-TiO₂, 30%g-C₃N₄/F-TiO₂ showing superior catalytic activity to commercial Degussa P25, pure TiO₂ and other g-C₃N₄/F-TiO₂ hybrids.

Fig. 8. (a) MB adsorption on Degussa P25, F-TiO₂, g-C₃N₄ and g-C₃N₄/F-TiO₂ hybrid in the dark (Inset: Absorption spectra of MB in the presence of 30%g-C₃N₄/F-TiO₂ composite), (b) photocatalytic degradation of MB under 410 nm LED light irradiation, (c) linear transform ln(C₀/C) of the kinetic curves of MB degradation, (d) the apparent pseudo-first-order rate constant kapp with different catalysts.

Jiang et. al. reported a series of two-dimensional CaIn₂S₄/g-C₃N₄ heterojunction nanocomposites with intimate interfacial contact which have been synthesized by a facile two-step method [33]. Compared with pristine $g-C_3N_4$ and $CaIn_2S_4$, the $CaIn_2S_4$ / $g-C_3N_4$ heterojunction nanocomposites exhibited significantly enhanced H₂ evolution and photocatalytic degradation of methyl orange (MO) activities under visible light irradiation. As shown in Fig. 9a, the $g-C_3N_4$ exhibits thin and irregular nanosheet structure with wrinkles, in agreement with the typical structural characteristic of graphite-like carbon nitride. In Fig. 9b, the TEM image shows the as-prepared $CaIn_{2}S_{4}$ is an irregular nanoplate with a diameter of around 20 nm. Figure 9c and d show the typical structure of the 30% CaIn₂S₄/g-C₃N₄ nanocomposite. The CaIn₂S₄ nanoplates anchor dispersedly across the g-C₃N₄ nanosheets, which form a two-dimensional heterostructure with intimate interfacial contact. The selected region marked by the red lines in Figure 9c is magnified to examine the detailed structure of the 30% $CaIn_2S_4/g-C_3N_4$ nanocomposite (Fig. 9d). As shown in Fig. 9e, the clear lattice fringes with a d-spacing of 0.278 nm, corresponding to the (400) planes of cubic phase $CaIn_{2}S_{4}$, indicating the nanoplates are $CaIn_2S_4$ with the two-dimensional structure. The morphology of the 30% $CaIn_2S_4/g$ - C_3N_4 nanocomposite was further confirmed by the HAADF-STEM image (Figure 9f).

The elemental mappings (Fig. 9g) reveal that Ca, In, S, C, and N elements coexistently distributed in the 30% $CaIn_2S_4/g-C_3N_4$ nanocomposite, and the $CaIn_2S_4$ dispersed on the surface of g-C₃N₄ also can be confirmed by the signals intensity of different elements.

Fig. 9. TEM images of (a) $g-C_3N_4$, (b) $CaIn_2S_4$, (c, d) the 30% $CaIn_2S_4/g-C_3N_4$ heterojunction nanocomposite, the HRTEM image of the 30% $CaIn_2S_4/g-C_3N_4$ heterojunction nanocomposite (e), HAADFSTEM-EDS mapping (f) and the spatially resolved Ca, In, S, C, and N elements of the 30% $CaIn_2S_4/g-C_3N_4$ heterojunction nanocomposite (g).

Fig. 10a shows the photocatalytic H₂ production activity of g-C₃N₄, CaIn₂S₄, and CaIn₂S₄/g-C₃N₄ heterojunction nanocomposites with different contents of CaIn₂S₄ from an aqueous solution containing 0.5 M Na₂S and 0.5 M Na₂SO₃ under UV light irradiation (triggered by 12 W UV-LEDs light). It can be seen that the H2 evolution is negligible over the pristine g-C₃N₄, which is consistent with the previous report [34, 35], and the in the 50% CaIn₂S₄/g-C3N₄ heterojunction nanocomposite is less than the pure CaIn₂S₄, resulting in the lower H₂ evolution rate than pristine CaIn₂S₄. Therefore, a suitable content of CaIn₂S₄ is crucial for optimizing the photocatalytic activity of CaIn₂S₄/g-C₃N₄ nanocomposites. As shown in Fig.10c and d, after three and five recycles, both the H₂ evolution rate and the activity of photocatalytic degradation of MO did not show a significant decrease. These results indicate that the as-prepared CaIn₂S₄/g-C₃N₄ heterojunction and degradation of MO.

Fig. 10. (a) Comparison of the photocatalytic H₂ production activity under visible light irradiation (triggered by 12 W UV-LEDs light) and (b) photocatalytic degradation efficiency under visible light irradiation (triggered by 500 W tungsten light lamp) over g-C₃N₄, CaIn₂S₄, and CaIn₂S₄/g-C₃N₄ nanocomposites with different contents of CaIn₂S₄; (c) Stability study of photocatalytic H₂ production activity and (d) photocatalytic degradation efficiency over the 30% CaIn₂S₄/g-C₃N₄ heterojunction nanocomposite.

3.3 g-C₃N₄/nanoscale photocatalysts

Liu et.al.[36] designed $g-C_3N_4@S$ deficient $CuIn_5S_8$ hollow structures (CN@VS-CIS) with improved visible-light photocatalyst activity for CO₂ reduction (as shown in Fig. 11). SiO₂ nanospheres were adopted as the templates to fabricate uniformly dispersed hollow core-shell structures with $g-C_3N_4$ shells. Subsequently, the growth of $CuIn_5S_8$ on the surface of hollow carbon was realized by a hydrothermal method.

Fig. 11. Representative illustration of the assembling of CN@VS- CIS heterostructures.

Graphitic carbon nitride based composite materials toward Synthesis and Photocatalytic Properties: Review

This finding confirms the formation of the heterojunction between $g-C_3N_4$ and CuIn₅S₈. The elemental mapping images (Fig. 12 e-j) ascertain the coexistence of C, N, Cu, In and S in CN@34.1 wt% VS-CIS hollow photocatalysts. The S vacancy is realized by rapid heating method arrived at 450 ! in only 5 min. Vacancies could effectively trap surface-arrived charge carriers, which significantly improve charge separation efficiencies. Simultaneously, the electron-donating nature of localized electrons around defects can activate inert absorbed molecules. The specific hollow nanosphere structures can make multiple scattering light inside the cavity, shortening the distance of charge carriers. Most notably, when hollow $g-C_3N_4$ is loaded with 34.1 wt% CuIn₅S₈, it deliveries the highest produced rates of CH₄4.8 µmol g-1h⁻¹ and CO 1.4 µmol g-1h⁻¹, and the catalyst capacity remains rather stable after 5 cycles. As for CN@VS-CIS with different contents, CH₄ generates since the beginning. Particularly, for the sample of CN@34.1 wt% VS-CIS heterojunction, the product of CH₄ continuously increases. After 6 h, the yield reaches a rather high 28.8 µmol g-1h-1, which is nearly over 10 times higher than hollow g-C₃N₄. Therefore, besides hollow structure engineering, the CN@VS-CIS heterojunctions and S vacancies play important roles for its high activity and selectivity.

Fig. 12. EDX mapping images (the element of C, N, Cu, In, S) of CN@34.1 wt% VS-CIS heterojunction.

Fig. 13. (a) Photocatalytic products generation rates over hollow g-CN, CN@VSCIS heterojunction with different contents of VS- CIS nanosheets (wt 13.6%, wt 23.8%, wt 34.1% and wt 40.7%) and hollow VS- CIS nanosheets for 6 h illumination. (b) Time courses of photocatalytic CH₄ production of the prepared samples under visible light irradiation for 6 h.

Liu et al. demonstrated a combined deposition-precipitation method and heat treatment to produce C_3N_4/ZnO photocatalysts, for which the optimal weight ratio of C_3N_4 was 5.0 wt.% [37]. Two lattice fringes with d = 0.325 and 0.279 nm overlapped mutually (Fig. 14a and 14b), which were corresponded to the (002) plane of C_3N_4 and (100) plane of ZnO respectively, suggesting a heterostructure was formed. By contrast, the optimized removal rates for RhB and Cr^{6+} of C_3N_4/ZnO were 3 and 5 times faster than those of raw C3N4, respectively. The enhanced photoactivity was mainly owing to efficient charge separations by injecting excited e["] from C_3N_4 and g- C_3N_4 nanosheets as supporters. Chen and co-workers firstly obtained mpg- C_3N_4 by a hard template method with SiO₂ as template agent, and then decorated ZnO NPs on it through the hydrothermal reaction (Fig. 14d) [38]. The photocurrent increased remarkably in the optimized ZnO/mpg- C_3N_4 over 3 times with $\ddot{e} > 420$ nm light irradiating (Fig. 14e),

which resulted from the efficient separation of photogenerated e["] - h⁺ pairs because of their strong synergistic effects. While, Li et al. received ALD-based g-C₃N₄@ZnO photocatalysts via a thermal atomic layer deposition method by using g-C₃N₄ nanosheets as supporters, as depicted in Fig. 14f [39]. This photocatalyst exhibited outstanding photodegradation (98.9%) and mineralization (72.8%) efficiencies for cephalexin within 60 min, and excellent photostability of g-C₃N₄@ZnO nanocomposites were also discovered.

Fig. 14. (a) TEM and (b) HRTEM image of C₃N₄ (5.0 wt.%)/ZnO samples, and (c) the proposed mechanisms of charge separation and transfer process for C₃N₄/ZnO photocatalysts [37]; (d) the schematic diagram of fabrication process for ZnO doped mpg-C₃N₄ composites and (e) transient photocurrent responses of mpg-C₃N₄ and optimal ZnO/mpg-C3N4 under » e" 420 nm irradiation in 0.1 M Na₂SO₄ solutions [38]; And (f) synthesis of ALD-based g-C₃N₄@ZnO catalysts by a thermal atomic layer deposition method [39].

4. Summary

Tremendous modification strategies have been implemented to develop efficient g-C₃N₄ based photocatalysts over the past several years, which exhibit superior chemical properties and photoelectric characteristics. This review comprehensively discusses the recent advances in engineering g-C₃N₄ by fabricating heterostructures and constructing diverse morphologies for enhanced photocatalytic performance. On one hand, such heterojunctions contain g-C₃N₄/LDH, g-C₃N₄/2D semiconductor based material and many other nanoscale materials modified g-C₃N₄ composites. Several charge transfer pathways occur in these nanohybrids under visible light have also been explicated in detail. Once forming heterojunctions with unique architectures, the improved visible-light photocatalytic activity of g-C₃N₄ based catalysts is mainly derived from a well visible-light response, high chemical stability, strong redox ability and fast charge migration and separation processes.

References

- 1. Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed. 51 (2012) 68.
- 2. G. Dong, Y. Zhang, Q. Pan and J. Qiu, J. Photochem. Photobio. C 20 (2014)33.
- 3. X. H. Li and M. Antonietti, Chem. Soc. Rev. 42 (2013) 6593.
- 4. F.Y. Cheng, H. Yin, and Q.J. Xiang, Appl. Surf. Sci. 391 (2017) 432.
- 5. Y.X. Yang, W. Guo, Y.G. Guo, Y.H. Zhao, X. Yuan, Y.H. Guo, and J. Chen, Ceram. Soc. 45 (2017) 1024.
- 6. X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Dmen, Y.D. Hou, X.Z. Fu, and M. Antonietti, J. Am. Chem. Soc. **135** (2009) 1680.
- 7. Y.C. Zhang, Q. Zhang, Q.W. Shi, Z.Y. Cai, and Z.J. Yang, Sep. Purif. Technol. 142, 251 (2015).
- 8. Y.Y. Bu, Z.W. Chen, T. Xie, W.B. Li, and J.P. Ao, RSC Adv. 6 (2016) 47813.
- 9. X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2 (2012) 1596–1606.
- 10. D. Zhang, G. Tan, M. Wang, B. Li, M. Dang, H. Ren, A. Xia, Mater. Res. Bull. 122 (2020) 110685.
- 11. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159-7329.
- 12. Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen, Z. Jiang, ACS Nano 11 (2017) 1103–1112.
- 13. Y. Song, J. Qi, J. Tian, S. Gao, F. Cui, Chem. Eng. J. 341 (2018) 547-555.
- 14. H. Liang, J. Wang, B. Jin, D. Li, Y. Men, Inorg. Chem. Commun. 109 (2019) 107574.
- 15. H. Zhao, X. Ding, B. Zhang, Y. Li, C. Wang, Sci. Bull. 62 (2017) 602-609.
- 16. Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, X. Shi, W. Bai, Sol. Energy Mater. Sol. Cells 157 (2016) 406-414.
- 17. M. Song, Y. Wu, G. Zheng, C. Du, Y. Su, Appl. Surf. Sci. 498 (2019) 143808.
- 18. Y. Wu, M. Song, Z. Chai, X. Wang, J. Colloid Interface Sci. 550 (2019) 64-72.
- 19. Y. Fu, W. Liang, J. Guo, H. Tang, S. Liu, Appl. Surf. Sci. 430 (2018) 234-242.
- 20. Y. Hong, C. Li, G. Zhang, Y. Meng, B. Yin, Y. Zhao, W. Shi, Chem. Eng. J. 299 (2016) 74-84.
- 21. Y. Zang, L. Li, X. Li, R. Lin, G. Li, Chem. Eng. J. 246 (2014) 277-286.
- 22. T. Ma, J. Bai, C. Li, Vacuum 145 (2017) 47-54.
- 23. H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal., B 160, 89 (2014).
- 24. M. Liu, S.J. Wei, W. C, L. Gao, X.Y. Li, L.Q. Mao, H.F. Dang, J. CHIN. CHEM. SOC 67 (2020) 246-252
- 25. G. Mamba, A.K. Mishra, Appl. Catal. B 198 (2016) 347-377.
- 26. T.S. Natarajan, K.R. Thampi, R.J. Tayade, Appl. Catal. B 227 (2018) 296-311.
- 27. S. C. Yan, S. B. Lv, Z. S. Li and Z. G. Zou, Dalton. Trans. 39 (2010) 1488-1491
- 28. Y. Hong, C. Li, G. Zhang, Y. Meng, B. Yin, Y. Zhao, W. Shi, Chem. Eng. J 299 (2016) 74-84.
- 29. L. Ge, C. Han, J. Liu, Y. Li, Appl. Catal. A. 409-410 (2011) 215-222.
- 30. W.K. Jo, S. Tonda, J. Hazard. Mater. 368 (2019) 778-87.
- 31. S. Tonda, W.K. Jo, Catal. Today. 315 (2018) 213-22.
- 32. K. Dai, L.H. Lu, C.H. Liang, Q. Liu, G.P. Zhu, Appl. Catal. B 156-157 (2014) 331-340
- D.L. Jiang, J. Li, C.S. Xing, Z.Y. Zhang, S.C. Meng, M. ChenÿACS Appl. Mater. Interfaces. 2015, 7, 19234-19242
- 34. Z.H. Chen,; Sun, P.; Fan, B.; Zhang, Z. G.; Fang, X. M. J. Phys. Chem. C 2014, 118, 7801-7807.
- H. Zhao, Y. M.Dong, P. P. Jiang, H. Y. Miao, G. L. Wang, J. J. Zhang, J. Mater. Chem. A3 (2015) 7375-7381.
- 36. S.M. Liu, L.J. Chen, T.T.Liu, S. Cai, X.X. Zou, J.W. Jiang, Z.Y. Mei, Z.H. Gao, H.GuoÿChem. Eng. J. **424** (2021) 130325
- 37. W. Liu, M. Wang, C. Xu, S. Chen, Chem. Eng. J. 209 (2012) 386-393.

- 38. D. Chen, K. Wang, T. Ren, H. Ding, Y. Zhu, Dalton Trans. **43** (2014) 13105–13114.
- 39. N. Li, Y. Tian, J. Zhao, J. Zhang, W. Zuo, L. Kong, H. Cui, Chem. Eng. J. 352 (2018) 412-422.

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/